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| Overview

* The people who suffer most from environmental issues often
have the fewest tools & resources to address them

« Focus on air pollution and human health
« Background: PM, ; and human health, exposure inequities

« Overview of how science informs policy
« Air quality health impact assessment, resource inequities
* There are ongoing attempts to “democratize” tools & resources
» Focus on reduced-complexity air quality modeling
« My work: Global InMAP
* These often come with tradeoffs
* e.g., losses in accuracy, extrapolating out of context



z SUSTAINABLE s“'*‘o
g‘: V DEVELOPMENT ALS
W 17 GOALS TO TRANSFORM OUR WORLD

NO 2 GOOD HEALTH OUALIIY GENDER
POVERTY NGER AND WELL-BEING EDUCAIION EQUALITY

o e o

Tl
DECENT WORK AND 9 INDUSTRY, INNOVATION 10 REDUCED SIISI‘AIAIEIII’!S
ECONOMIC GROWTH AND INFRASTRUCTURE INEQUALITIES Mllm

12 RESPONSIBLE
CONSUMPTION
ANDPRODUCTION

QO

Eéa

CLIMATE PEACE, JUSTICE PARTNERSHIPS

1 ACTION 1 BELOW WATER 1 ON LAND 1 AND STRONG 1 FOR THE GOALS @
INSTITUTIONS

SUSTAINABLE

DEVELOPMENT

>, COALS



Air pollution: the most important environmental health risk

Global, Both sexes, All ages, 2019
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Most of the deaths are from exposure to fine particles (PM, 5)
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PM, s are diverse (in source, shape, size, chemical composition ...)

Global population-weighted mean PM,, . composition
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PM, s exposure can lead to cardio-respiratory (and other) conditions

cardiac changes
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Miller et al. Free Radic Biol Med. (2020). 7
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Millions of deaths—mostly in developing countries
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... and the inequality is getting worse

PM, 5 concentrations in 2016 Change in PM, 5 concentrations (2010 — 2016)
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How do we fix it? A complex science & policy issue
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Total deaths per year in the United States from human-caused, domestic emissions: 100,000

Thakrar, S. K., et al. Environ. Sci. Technol. Lett. (2020). doi:10.1021/acs.estlett.0c00424 10



Air quality health impact assessment: A basic overview

How do we estimate the air quality health impacts of a potential policy decision? (e.g., reducing urban traffic)

5 steps:
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Traditional air quality modeling is difficult ...

You are simulating the atmosphere!

Annual simulations can take:

Time: often weeks for annual simulations,

Resources: typically require supercomputer use, GB of
memory and TB of storage

Expertise: often require teams of scientists, Ph.D. level
Data: often requires substantial set-up (emission Bey et al. J Geophys.| Res.: Atmos.

inventories, boundary conditions, surface characteristics, 106.D19(2001). doi:10.1029/2001JD000807
etc. —

This is implausible for some use-cases and some
policy-makers. For example,

« What if you wanted to do optimal policy?

« What if you wanted to assess 10,000 different policy

scenarios? Linux  Slurm, PBS NetCDF, bpch

Fortran,
compilers

... ahd some science!



Traditional air quality modeling is difficult ... especially in places where it is

Developing countries typically
have worse air quality, but also
typically have:

- Less institutional and
social capital (collaboration
networks with modelling
teams)

- Fewer resources (e.g.,
funding, access to
supercomputers)

- More difficulty setting up
models (less data available,
fewer models available!)

needed the most

60% of air quality related deaths occur in countries where there

is no known GEOS-Chem user
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Support Team, Steering Committee, & Users of GEOS-Chem



“*Reduced-complexity” air quality models (RCMs) are a

EMAP

requirement traditional regional Reduced Tessum et al., PloS One 12.4 (2017).
model (WRF- complexity model doi:10. 1371/Journa| pone.0176131

democratizing” tool

Reduced complexity models (e.g., INMAP, AP2, EASIUR, COBRA)
estimate PM, 5 exposure and health impacts more expediently than
traditional models, typically using simplifying assumptions

Chem) (InMAP)
time weeks hours
resources supercomputer laptop computer
expertise Ph.D. level Undergrad/M.S.
level f
data Emissions, Just a shapefile
meteorology, eftc.

spatial resolution 12 x 12 km 1km in urban areas

Thakrar, S. K., et al. Ifnlcl}éﬁshéldfliaeézrmol Lett. (.2050’60).
doi:10.1021/acs.estlett.0c00424

. but they are generally unavailable outside the United States (4% of
the world’s population; 2% of its air quality-related deaths)



My work: a global, reduced-complexity air quality model
to bridge the gap for policy assessment worldwide
« Global INMAP uses the same underlying mechanism as INMAP (a United States

RCM), but can be used across a global spatial domain
« Global INMAP leverages outputs from GEOS Chem, a traditional air quality model

requirement traditional global Reduced
model (GEOS complexity model
Chem) (Global InNMAP)
time 100 hours 4 hours 96% faster
resources supercomputer desktop computer
expertise Ph.D. level Undergrad/M.S. level
data Emissions, Just a shapefile
meteorology, etc.
spatial resolution 12 x 12 km 4km in urban areas  13% ground- Wi
level grid cells Ka@hqskjgﬁg -
pop-wtd. avg. grid 39,000 km? 1,000 km?2 City
cell area

ers . 2
Thakrar, S. K., et al. PLoS One. (2022). doi:10.1371/journal.pone.0268714 Tahiti (1,000 km?) Taiwan (39,000 km?)



Global INMAP predicts pollutant concentrations fairly accurately ...

GEOS-Chem
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Global INMAP predicts pollutant concentrations fairly accurately ...

GEOS-Chem Global InMAP
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Global INMAP predicts pollutant concentrations fairly accurately ...

GEOS-Chem Global InMAP
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. but (of course) not as accurately as a traditional model

Total PM,  predictions against measurements (N = 1,687)
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Global INMAP performance varies by region

«  Global INMAP inherits biases from GEOS Chem (which it uses to parameterize its physics and chemistry)
«  This suggests better inputs can improve Global InMAP

GEOS-Chem
— GEOS-Chem fit
* Global InMAP
— Global INMAP fit
—1

GEOS-Chem Global INMAP

o

Model (ug/m3)

llllpslllﬁlllﬁilH[slllﬁlllE%

Concentration (pg/m?)

I IIIIhblllbblllbblllhblllbblllbb

1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 Measurements (ug/m3)

Model-measurement difference (ug/m3) NMB NME S R2
I GEOS-Chem -35% 38% 0.20 0.24
50 ) -z;,o _?:0 _2'0 _1'0 (') Global INnMAP -64% 64% 0.21 0.28

Thakrar, S. K., et al. PLoS One. (2022). doi:10.1371/journal.pone.0268714



For some regions, Global INMAP performance is inaccurate—but ...

*  Not much more inaccurate than traditional models!
«  There are often not enough measurements to properly evaluate ...
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For some regions, Global INMAP performance is inaccurate—but ...

*  Not much more inaccurate than traditional models!
«  There are often not enough measurements to properly evaluate ...
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Global INMAP can predict global pollutant concentrations at the urban scale
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Every step of air quality health impact assessment is more difficult in a
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It’s not always clear how
to value mortality risk
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Often there are no high
quality ground
measurements



Every step of air quality health impact assessment is more difficult in a
developing country
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Democratizing tools can help bridge the gap, but often have tradeoffs
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| Conclusions

« Exposure to air pollution is associated with millions of deaths each
year, mostly in developing countries

 Designing policy solutions to reduce air quality-related deaths relies
on scientific tools (e.g., models, measurements)

* The countries with the worst air quality also are the least equipped
with the scientific tools needed to inform policy

* “Democratizing” tools (such as my work in building global, reduced
complexity air quality models) can help bridge the gap between
available tools and policy needs, especially in countries where
expertise, resources, or existing tools are in short supply



| Potential discussion questions

‘here are clear environmental inequities: the world’s poorest face
the largest environmental burdens.

1. Are policy makers in developing nations also generally less
equipped with resources, tools, and knowledge to reduce their
burdens? Should we as a communlty think more about how
environmental science is produced, and whether it is
unequally applied?

2. What is the potential for “democratizing” tools (low-cost
devices, data, models, etc.)? What is their role in sustainable
development? What are the tradeoffs? What are the
opportunities?



